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Abstract —Our work with gratings in dielectric image guide shows that

it is distinctly advantageous to place the grating notches on the sides of the

guide, or on the top of the guide, depending on the mode used. Means are

diseusscd for modefing gratings using an equal-fine-length transmission-line

eqnivafent circuit. Excellent agreement between computed and measured

bandstop frequency responses of gratings are obta@rt. Design relations for

gratings are presented, and eqnations for anafysis and design of

parallel-coupled grating structures are derived. It is shown that a simple

bandpass filter can be made from properly designed paraflel-coupled grat-

ings with distributed loads at one end. It is afso shown that by use of

combinations of parallel-coupled and direct-coupled gratings, multiresorra-

tor filters with Chebyshev or other characteristics can be obtairreal. Experi-

mental results in agreement with computed responses are demonstrated.

I. INTRODUCTION

B ECAUSE OF THEIR potential value for rnillimeter-

wave or optical integrated circuits, a great deal of

research has been done on a variety of configurations of

dielectric waveguides. However, relatively little has been

done on techniques for realizing circuitry utilizing such a

waveguide. This is particularly true in the case of

dielectric-waveguide (DW) filters, which pose special prob-

lems. Since the energy is only loosely bound to most DWS,

sharp bends will radiate strongly, T-junctions cannot be

used, and open and short circuits are usually not available.

This means that in most cases quite different design meth-

ods are required for DW filters than those which are

normally used at microwave frequencies. An exception to

the above statements occurs in the case of the “ nonradia-

tive” dielectric waveguide discussed in [12] and [13] which

uses a dielectric guide between two metal ground planes. In

this case, the” nonradiative mode” will not radiate as long

as the frequency is below the frequency for which the

spacing of the ground planes is A ~, /2. For such frequen-

cies, sharp bends and T-junctions can be utilized. (There

are also additional frequency bandwidth limitations related

to the cutoffs of the fundamental and higher order non-
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Fig. 1. (a) A two-port resonator in dielectric waveguide. (b) Typicaf
attenuation characteristic for structure at (a).

radiative modes.) This guide presents some promising cir-

cuit possibilities, but its requirement of two metal ground

planes and/or its frequency bandwidth limitations can be

disadvantageous in some applications.

There are a few DW filter structures which have ap-

peared which are of practical interest. One is the DW

grating w~ch is well known to have useful potential for

bandstop filter applications [1], but relatively little infor-

mation is presently available in the literature to aid in the

practical design of such gratings. Pairs of such gratings on

a single guide, as in Fig. l(a), can give a bandpass reso-

nance centered in the stopband of the gratings as suggested

in Fig. l(b). This can be useful for frequency control of

oscillators [2], but is useless for most bandpass filter appli-

cations because the width of the grating stopband would,

in practical cases, be typically less than 10 percent. Until

recently, the most practical DW bandpass filter that has

been treated in the literature is the ring resonator filter’ [3].
However, this filter type has a major drawback in that, in

order to reduce radiation, the DW ring must have a very

sizeable radius as compared to a wavelength. This results in

quite closely spaced passbands which are unacceptable for

most situations of interest. Filters using the nonradiative

guide [12], [13] mentioned above may provide attractive

means for designing compact dielectric waveguide ‘filters

using techniques analogous to those used in TEM-mode

stripline filters. However, the application of such filters will
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be limited by the two ground plane requirements, and by

the bandwidth limitations of this type of guide (which may

make it difficult to achieve stopbands as broad and strong

as are frequently required).

We have been working on new ways of utilizing DW

gratings in parallel-coupled configurations in order to ob-

tain bandpass filters with strong broad stopbands. The

methods used appear to be amenable to use with various

forms of dielectric waveguides. Some early, preliminary

results on this work have been previously reported [4], [5].

In order to build a sound basis for the optimum design of

DW filters of this class, we have studied the fundamental

properties of both single and parallel-coupled DW grat-

ings. This paper reports on the results of that study.

Herein, we will also discuss and illustrate by theoretical

and experimental results how parallel-coupled grating

structures can be used for realizing bandpass DW filters

with broad stopbands. However, we will delay discussion

of the systematic design of such filters for a future paper

when more examples have been explored.

II. CONFIGURATION AND MODELING OF DW

GRATINGS

We have been working with an “image guide” consisting

of a DW on a metal ground plane, and have tested grating

performance both using notches in the top of the guide as

suggested in Fig. l(a) and notches in the sides of the guide

as indicated in Fig. 2(a). We found that when using the

lowest order mode whose E field is predominantly verti-

cally polarized (it would be referred to as the E:l mode in

[6]), the use of notches on the sides of the guide as in Fig.

2(a) was decidedly superior [7]. Conversely, when using the

predominantly horizontally polarized Efi mode, notches in

the top of the guide as in Fig. l(a) were much superior. By

being” superior” we mean having a much stronger attenua-

tion for the given depth of notches and having no spurious

stopbands close to the desired stopband. In our filter tests,

we have used the EL mode and gratings with notches on

their sides. These matters are discussed in [7] along with

other observations concerning modes in DW gratings.

For purposes of a filter design using gratings, it is

important to have an accurate, simple means for char-

acterizing the gratings. As has been done by others, we

model DW gratings by a transmission-line equivalent such

as that in Fig. 2(b). But note that here the equivalent

circuit uses line sections which are specifically all of the

same length (and it assumes the same wave velocity

throughout). By analysis of the circuit in Fig. 2(b) it can be

shown that if a grating is terminated in ZO at both ends,

the mid-stopband attenuation A~u in decibels is given by

A [1
4r2n

max = – lolog~~ dB
(r’” +1)’

(1)

where n is the number of ZI sections in the grating, and

~=z>l
Z.

(2)
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Fig. 2. (a) The dielectric-waveguide (DW) grating configuration used in
the experiments in this paper. (b) An equat-line-length equivalent
circuit for gratings such as that at (a).

which, as indicated, is greater than one for a grating such

as that in Fig. 2(a). Equations (1) and (2) can be turned

around so that we can computer from a measured value of

A ~= for a test grating.1 The result is

where

–A

()
T = antilog10 ~ .

(3a)

(3b)

Thus the equivalent-circuit parameters for a given grating

design can be determined experimentally by fabricating a

trial grating and determining its mid-stopband attenuation

A and the frequency ~0 at which that attenuation occurs.

F~o=m n and the measured A~a, r can be computed by (3a).

The measured stopband center frequency ~0 fixes the wave

velocity to be used in the equivalent circuit in Fig. 2(b)

because at frequency ~0 all of the line lengths in the

equivalent circuit are a quarter-wavelength long. Note that

a more precise equivalent circuit than that in Fig. 2(b)

would include lumped reactance to account for the fring-

ing fields at the steps in Fig. 2(a). However, using the

approach outlined here these effects are not ignored as we

are using effectiue values of the impedance ratio r = ZI /ZO

and auerage wave velocity, both of which have the in-

fluence of these fringing fields merged into them. As we

shall see, since the fringing field effects are relatively small,

this approximate methods works quite well, at least for

computing responses over the stopband frequencies.

Of course, dispersion must also be included for precise

calculation of frequency response. Our approach has been

to first obtain a measured wave velocity at the center

frequency f. as described above. Then a theoretical average

velocity at frequency f. over a period 10+ 11 in Fig. 2(a) is

computed using the effective dielectric constant method [8]

1In our experimental work we measured A ~= from measured responses
such as that in Fig. 3(a) by drawing a horizontal line across between the
minimum attenuation points on both sides of the stopband and then
measuring from this line down to the maximum attenuation point.
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Fig. 3. (a) Computed and measur~d attenuation for a grating as in Fig.
2(a) with 35 narrow sections, w = 1.270 cm, h = 1.016 cm, w, / w = 0.625,
10= 0.528 cm, II= 0.577 cm, and (,= 2.55. (b) Comput~d and mea:
sured attenuation for a grating as for Fig. 3(a) but with 38 narrow
sections, wl/w = 0.375, 10= 0.541 cm, and II = 0.648 cm.

with junction fringing-field effects neglected.z Then the

velocity used for computing the response is made to vary

with frequency about the measured value at jO proportion-

ally to the way the “theoretical” average velocity varies

about its ~0 value.

Fig. 3(a) shows a measured response for a Rexolite 1422

grating as in Fig. 2(a) having t, = 2.55, 35 ZI sections, and

ivl / w = 0.625. (Detailed dimensions are given in the figure

caption.) This grating was found to have r = 1.069, and the

agreement between measured and computed responses is

seen to be excellent. Fig. 3(b) shows the results for another

grating made from the same material but with wl/ w =

0.375, giving very deep notches. In this case, tbe itttenua-

tion is much stronger and r =1.167. Even though the

fringing field, effects in this case must be relatively large,

the agreement between the measured and computed re-

sponses is still reasonably good.

In the example designs discussed above, we endeavored

to make the electrical lengths of the ZI and 20 sections

approximately equal at the stopband center frequency ~.,

in conformity ‘with the equivalent circuit in Fig. 2(b).

However, we have found that in many situations one can

use the equal-line-length circuit in Fig. 2(b) to accurately

zThis approximate theoretical average velocity has been around 3-Per-

cent lower than our measured average velocity in our example grating
cases. Comparing these resufts with an average velocity obtained from
velocities measured on sections of uniform guide suggests that most of the
roughly 3-percent error referred to is due to the effective dielectric
constant method approximations while surprisingly little error is due to
the fringing fields at the discontinuities.

compute the frequency response for gratings where the ZI

and 20 sections have very different electrical lengths. The

requirements are that the effective value of r used in the

circuit in Fig. 2(b) must be chosen to give the same

midband attenuation as is given by the actual grating with

unequal line electrical lengths, and the value of r must not

be too large if the electrical lengths are very unequal.

Taking an extreme example, the frequency response was

computed for a grating having 30 ZI and 20 sections,

r =1.2, and a l-to-3 ratio of line lengths. This grating had a

midband attenuation of 27.6 dB. By (3a, b), the corre-

sponding value of r for an equal-line-length model was

r =1.138, and the equal line lengths were set to the average

value of the unequal line lengths. The frequency response

for the equal-line-length model was very nearly the same as

that for the unequal-line-length model in the vicinity of the

stopband (where the computations were made). Being able

to use this simple, equal-line-length model in Fig. 2(b)

provides considerable simplification and convenience as

fewer parameters are involved.

Besides experimental means for determination of the

grating impedance ratio r, we have also investigated the wse

of the approximate equation

r=~=(u,),/(up)o (4)

where (UP)1 is the phase velocity in the region of ZI and
(UP)O is the phase velocity in the region of 2.. Equation (4)

would be exact for a metal waveguide carrying a TE mode

with 20 regions completely filled with dielectric and ZI

regions completely filled with air. Using the effective di-

electric constant method for computing the velocities, (4)

yields r =1.075 for the grating used for Fig. 3(a) as com-

pared to the 1.069 measured value, For the grating used for

Fig. 3(b), (4) yields r =1.173 as compared to the 1.167

measured value. This agreement is surprisingly good and

shows that (4) can be a useful approximation for gratings,

as in Fig. 2(a), excited in the E{l mode. However, we also

found that in the case of an E; mode exciting a grating as

in Fig. 2(a), or an EA mode exciting a grating made using

notches in the top of the guide, the measured value of r is

considerably less than is predicted by (4).

III. CHARACTERIZATION OF INFINITE GRATINGS

In order to be able to evaluate the fundamental char-

acteristics of gratings independently from whatever termina-

tions they are going to have, it is desirable to utilize the

parameters of infinitely long gratings. This can be done in

terms of their “image parameters” (see [10, ch. 3]). Fig.

4(a) shows part of a grating as in Fig. 2(b) which extends

to infinity on the right. This infinite grating can be thought

of as consisting of basic sections as in Fig. 4(b) with 20

ends connected to 20 ends and ZI ends connected to 21

ends. If we look in to the’ grating at the point ZIO in Fig.

4(a), the impedance of the infinite grating extending to the

right is given by

z =2 (l+r)cosfl-(1-r)
10

{0 (l+r)cosf?+(l-r) “
(5a)
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Fig. 4. (a) Equivalent circuit for a grating which extends to infinity to
the right. (b) A fundamental section of the infinite grating.

Alternatively, if we look in to one of the basic sections as

in Fig. 4(b) from the right side and the grating extends to

infinity to the left, the impedance seen will be

~ =Z (I+r)cose+ (l-r)
11

/‘ (I+r)cose-(1-r)
(5b)

where

(5C)

In (5c), f. is the frequency at which the line lengths 1in Fig.

4(a) are a quarter-wavelength long. Of course, in many

cases it will be necessary to modify the electrical-length

relation (5c) in order to include the effects of dispersion.

The impedances ZIO and ZI1 are the “image impedances”

for this structure and can be derived by the methods of [10,

sec. 3.05]. When (5a) and (5b) are imaginary, the sign for

the square root should be chosen so the reactance versus

frequency has a positive slope.

Fig. 5(a) shows a plot of the image impedance ZIO versus

frequency for the exaggerated case of r = 1.894. Within the

frequency range shown there is a passband from f = O to fa

and from fb to 2 f., in which the impedance is purely real.

Also there is a stopband from f = fa to fb in which the

impedance is purely imaginary. NOW the impedance Zin in

Fig. 4(a) would usually be the one of most interest rather

than Z,o. If we add on the additional line length 1/2 and

compute the impedance Zi~, the result is as shown in Fig.

5(b). Note that in the stopband the grating exhibits series

resonance. The sharp spurs in the Xin characteristic are

possible because the grating is infinite.

By use of (5a)–(5c) it can be shown that the fractional

bandwidth of the stopband of a grating is given by

or for (r – 1) <<1

=~(r-1)
(r–l) <1”

(6b)

Note that for (r – 1) <<1, the fractional stopband width is

proportional to (r – 1). Equations (6a) and (6b) do not

include the effects of dispersion, but at least for narrow-

2 - ~R,O/ZO

N
‘o~.

20 0
0 / fo,/l /“No f. ‘b Zfo
.

K: /(./20

-2 -

/’

I

-41 , Ii I I I

FREQUENCY f

(a)

1 !

1 I
FREQUENCY f

(b)

Fig. 5. (a) The image impedance ZIO seen looking right into the infinite
grating as defined in Fig. 4(a). (b) The impedance Z,n looking into the
infinite grating as defined in Fig. 4(a).

band cases this can be corrected relatively simply by in-

cluding appropriate derivatives of the guide wavelength.

The above equations for A/f. should be divided by

[--1
dA~O d~~l

10 df + ‘1 df
D=–

A A
(7)

*+11*
10 f f f=fo

where 10 and Ago are for the lines of impedance Z., and 11

and Agl are for the lines of impedance Z1. The parameter D

is greater than one for dispersive gratings and reduces to

one for nondispersive gratings. Thus it is seen that the

effect of dispersion will be to reduce the stopband width.

The approximate values for the image-stopband-edge

frequencies f= and fb are shown in Fig. 3(b) for that

particular grating. If that grating was properly terminated

in its image impedance at both ends, the attenuation would

go identically to zero at f= and fb, and remain zero

throughout the passbands. However, due to mismatch be-

tween the image impedance ZIO and the Z. line impedances

used at both ends, the attenuation does not go to zero at fa

and fb, and has ripples in the passbands. The ripple

minima occur when the overall image phase shift of the

grating is a multiple of T so that the reflections from the

ends cancel, while at the ripple maxima the overall image

phase shift of the grating is an odd multiple of 7r/2 so that

the reflections from the ends add in phase (see [10, ch. 3]).
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By taking the derivative of the image reactance XIO at ~0

(as in [9]), we find that the slope of XIO at & is like that of a

line of impedance 20 which has total reflection at a point

1 1 r

‘d= 2(r–1) ‘Z=2(r–1)
(8)

half-wavelengths beyond where Zh is observed in Fig. 4(a).

(This equation differs from [9, (lOb)] by 1/2 because Z,.

looks into an initial 20 section instead of an initial ZI

section.) For characterizing resonances such as that in Fig.

5(b) for purposes of filter design [10], it is useful to define a

reactance slope parameter

(JO (ixin
xi. = 2 do ~=wo’

—— (9)

Making use of (8) and known properties of transmission-

line resonators (see [10, sec. 5.08]), we find that the reac-

tance slope parameter for the resonance of Zti in Figs. 4(a)

and 5(b) is given by

&n=~m
20 2 ‘“

(lo)

This equation can be corrected for dispersion by multiply-

ing by the factor D in (7). Equation (10) is applicable to

finite as well as infinite gratings if the grating is long

enough to have, say, 15-dB or more attenuation at ~O.

IV. ANALYSIS OF PARALLEL-COUPLED GRATINGS

We shall see in Sections V–VII that parallel-coupled

gratings have very useful properties for bandpass filter

applications. When analyzing the coupling between such

gratings, it is convenient to think in terms of their even and

odd modes. The even mode is excited when the two grat-

ings are driven symmetrically as suggested in Fig. 6(a),

while the odd mode is excited if they are driven asymmetri-

cally as shown in Fig. 6(c). Because of the symmetries,

identical results are obtained for the left grating if it alone

is used, and for the even mode a magnetic wall is placed at

the plane of symmetry, while for the odd mode an electric

wall is placed at that plane, as shown in Figs. 6(b) and

6(d). The effect of the magnetic wall or electric wall

adj scent to the grattig is primarily to alter the wave

velocities in the grating. From test experiments we have

found that for cases of very tight coupling the walls will

also have significant effect on the r = ZI /20 ratio, but that

in many cases of interest that effect is small and can be

ignored. Thus we see that for the odd and even modes the

gratings behave essentially the same except for somewhat

different wave velocities. This will cause the stopbands for

the odd and even modes to be centered at different fre-

quencies.

Fig. 7(a) shows a pair of coupled gratings with a genera-

tor and load, and it will be of considerable use to us to

obtain the transfer function Vz/ Vg, where Vz is the voltage

between node 2 and ground. The excitation in Fig. 7(a) can

be seen to be representable as a superposition of the

even-mode excitation shown in Fig. 7(b) and the odd-mode

MAGNETICWALL

E

%

.A=.d
METAL METAL

(a) EvEN MOOE (b)

ELECTRIC WALL

h

e,

\ &i!&.
METAL METAL

(c)
000 MODE (d)

Fig. 6. At (a) is shown parallel gratings excited in the even mode and at
(b) is shown an equivalent single-grating boundary-value problem. At
(c) and (d) are shown analogous odd-mode situations.
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Fig. 7. At (a) is shown two coupled gratings driven by a singfe genera-
tor. This excitation is seen to be representable as the superposition of
the even- and odd-mode excitations at (b) and (c), respectively.

excitation shown in Fig. 7(c). The even-mode reflection

coefficient is

(11)

where Z’ is the impedance seen looking right from either

node 1 or node 2 in Fig. 7(b) and ~ and V,e are the

even-mode incident and reflected voltages, respectively.

The impedance Ze is computed from the transmission-line

equivalent circuit using the average even-mode velocity u’.

(The even-mode velocities for the 20 and 2, sections will

not be the same for a grating as in Fig. 2(a), so an average

of the two velocities weighted in proportion to the lengths

10 and /l (or a measured average value) should be used in

the equal-line-length equivalent circuit.) The total even-

mode voltage at terminal 1 is

v;=~+v:

(12)
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Thus because of the symmetry of the even mode, at both

nodes 1 and 2

Vj=Ve–~ l+re).1–2( (13)

Analogously, for the odd-mode situation in Fig. 7(c) the

reflection coefficient is

‘ZO-R
r“ =

ZO + Rg
(14)

g

where Z“ is computed from the grating equivalent circuit

using the average odd-mode velocity. Then by the odd-mode

asymmetry

v;=–vf=–~(l+r”). (15)

The total voltage at node 2 is then

V2=V; +V:

=~(re-ro) (16)

and our desired transfer function is

V2 re – ro
—.
Vg 4“

(17)

Note that if

Irel=lr”l=l andre= –r” (18)

lV,/VJ = 1/2, and maximum power transfer will result.
Inserting (11) and (14) in (17) yields

V2 Rg(Ze – Z“)
(19)

~= 2(z’+Rg)(z”+Rg) “

Equations (17) and (19) are specialized to the situation

where the gratings have equal, resistive terminations Rg at

ports 1 and 2. Cases having arbitrary circuits connected at

the input and output can be treated by representing the

coupled gratings using the well-known ABCD parameters

defined by

(20)

where 11 and Iz are as defined in Fig. 7(a). It can be shown

that

A= D=;::;:

~ = 2Z’Z”
ze – ZO

c= 2
Z’– z””

(21)

It was noted herein that due to the different velocities

for the odd and even modes, these modes have grating

resonances at different frequencies. The question arises as

to what velocity will fix the center frequency of a transmis-

sion resonance observed when the circuit is excited as in

Fig. 7(a). Trying some simple examples, the effective phase

constant for computing resonances is found to be

B.ff =;=(B’+13”)/2 (22)
e

where

(23)

is the effective velocity. This effective velocity is used in

calculating the center frequency ~0 of the passband which is

provided by coupled gratings.

Equations (22) and (23) lead to convenient expressions

for computing the even- and odd-mode electrical lengths in

the equal-line-length models of the gratings. The even-mode

electrical length for each line section is

(24)

while each section electrical length for the odd mode is

(25)

where f. is the center frequency of the passband. (At f. all

of the line sections are a quarter-wavelength long in terms

of the wave velocity ueff.)

V. A SIMPLE PARALLEL-COUPLED-GRATING

BANDPASS FILTER

Fig. 8 depicts a kind of DW grating structure which has

useful bandpass filter properties. If properly designed,

when the gratings are in their stopband, power entering at

A will be transmitted on out port D. However, when the

gratings are in their passbands, the power will be trans-

mitted on to the loads on the right, and a stopband will

exist with regard to transmission from port A to port D. It

is important that as much as possible, coupling should only

exist between the gratings and not between the input and

output guides. This is because any power coupled directly

between the input guide and the output guide will tend to

reflect from the leading edge of the grating at D. This

effect holds to some extent even when the gratings are in

their passbands, and the small power reflected from the

grating leading edge at D will degrade the stopband for

transmission from the input to the output guide. Also, to

minimize reflections from the right ends of the coupled

guides, the loads are formed by gradually introducing lossy

material into the grating structure. This is probably about

as close as we can come to the ideal situation of terminat-

ing the gratings in their image impedances.

In order to analyze a structure of the sort in Fig. 8, let us

first consider the idealized case in Fig. 9 which uses infinite

gratings, with the leading edge of the coupled region at the

center of a ZO section. Then Ze and Z“ are given by (5a)

using velocity v’ or u“, respectively, and Z’ and Z“ both

look like Fig. 5(a) but with a shift in frequency scales with
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Fig. 8. A simple dielectric waveguide barrdpass filter,

Fig. 9. E?.q.rivafent circuit for infinite coupled gratings with the first [/2

portion uncoupled.

f: ODD f;
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Fig. 10. At (a) is shown how the even- and odd-mode stopbands must
be located in order to obtain complete power transfer at ~0 for the
circuit of Fig. 8. At (b) is shown how these stopbands must overlap in
order for the circuit in Fig. 14(b) to apply.

respect to each other. In order to get complete power

transfer to the output guide, (18) must be satisfied. This

condition will be fulfilled at ~0 if the velocities u’ and u“ are

chosen so the even- and odd-mode stopbands are contigu-

ous as shown in Fig. 10(a). Then frequency ~; = & for

which ZO is infinite coincides with frequency f: for which

Ze is zero, and by (11) and (14) we see that (18) is satisfied.

By use of (5a) with 0’= til/ue and 0° = til/uO, the stop-

band-edge constraint at f. in Fig. 10(a) gives

l–r()COS–l —
u“ l+r—.

r-1 -
(26)

Ue

()
COS–l —

r+l

This equation tells us that for a given grating impedance

ratio r, in order to obtain complete power transfer at f. it is

necessmy that the gratings are spaced apart a distance so

that the indicated average uO/u’ ratio is achieved. Either

closer or greater spacing will result in reduced power

transfer.

Fig. 11 shows the computed response for the case of two

infinite gratings having r =1.071 which by (16) calls for

Fig. 11.

NIXfdAL IZEO FREWENCY, flfo

Computed response for a filter design as in Fig. 8 with infinite

UO/Ue=1.045. The sharp corners in the response are possi-

ble because the gratings are infinite. Some analysis shows

that the sharp breaks on the sides occur where

f; u“ f: u’

X=3 ‘=f, 2.

(27)

If, instead of starting the coupled region of the grating in

the middle of a pair of ZO section (as suggested in Fig. 9),

the coupled region is started at the beginning of a pair of

Z. sections, then 2’ and Z“ will, each look like Fig. 5(b),

except for some difference in frequency scale. In this

situation, for maximum power transfer at f., (18) must be

satisfied by using a UO/Ueratio such that at&

~%lf=f, = jzo = - jx:~=fo. (28)

In most cases the bandwidths involved will not be very

large and the UO/Ue ratio obtained by (28) will be virtually

the same as that obtained by (26).

A filter of the type in Fig. 8 was tested using a pair of

gratings with the same parameters as for Fig. 3(a), spaced

0.610 cm apart, and driven in the Efl mode. The parallel-

coupled gratings each had 32 ZI and ZO sections. Over

about the last third of each grating, distributed loss was

gradually introduced using absorbing foam material. The

resulting response indicated by the solid line in Fig. 12 is

seen to have the same V shape around the passband that is

apparent in Fig. 11. The various minor spurs in the re-

sponse result from the fact that the gratings are not

terminated in their image impedance, and thus numerous

weak resonances occur because of the small reflections at

the ends of the gratings, We found that these resonances

were greatly suppressed by use of loads formed by distrib-

uted loss in the gratings as for the solid line in Fig, 12. For

example, the dashed line in Fig. 12 shows the computed

response for the case in which the gratings are abruptly

terminated in Z. loads. The distributed loads are seen to

work much better.

The midband loss of 2.6 dB in Fig. 12 includes the mode

launchers and about 86 cm of connecting DW waveguides.

The midband loss of the filter structure alone is less than

1.5 dB. Note that the nominal stopband attenuation is at

most frequencies 30 dB or better. Since this type of filter is

absorptive in its stopbands it should be possible to cascade
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Fig. 12. The solid line shows a measured response (including mode
transducers and connecting DW guides) for a filter as in Fig. 8 using
distributed loads. The dashed line shows a computed response using
lumped 20 loads.
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Fig. 13. Filters of the type in Figs. 8 and 12 cascaded to give very high
stopband attenuation.

such structures without having harmful stopband interac-

tions. Thus very large stopband attenuations maybe possi-

ble using cascaded filters as in Fig. 13.

VI. THE IMPEDANCE-INVERTING PROPERTY OF

PARALLEL-COUPLED GRATINGS

Suppose we have two resonators, each of which exhibits

a series-type of resonance. If they are connected in series

they will simply give a single-resonator response with an

increased reactance slope parameter. In order to give a

two-resonator type of response they must be coupled by a

circuit which has an effect like the impedance inverter Klz

in Fig. 14(b). (Recall that an idealized impedance inverter

acts like a transmission line of characteristic impedance
Klz with & 90° phase shift at all frequencies.) Both of the

gratings in Fig. 14(a) when isolated and viewed from the

input of a full ZO section presents a series-type resonance

similar to that in Fig. 5(b). If two such gratings are placed

parallel to each other so that they interact, it is desirable to
know if at terminals A and B in Fig. 14(a) they behave like

the two-resonator equivalent circuit in Fig. 14(b) for fre-

quencies in the vicinity of the desired passband; and if so,

what the values are for the reactance slope parameters xl

and x ~, and for the inverter parameter Klz, at the center

*I
A+llll! lllllllllllllll llllllis~

B~

(a)

(b)

Fig. 14. At (b) is shown an equivalent circuit which applies for the
circuit shown at (a) at frequencies for which the stopband-overlap
condition in Fig. 10(b) is satisfied.

frequency fo.

The A, B, C, D parameters for the circuit in Fig. 14(b)

are

where at the resonant frequency f. of the resonators,

We wish to compare the A, B, C, D parameters for the

circuit in Fig. 14(a) with those above in order to establish

any equivalence that may exist.

In order to simplify the analysis we shall assume that the

gratings are infinite and that they are coupled only up to

the middle of the input 20 section as shown in Fig. 9. Then

by (5a) Z’ and Z“ are given by

Ze = Z.

/

(l+r)cose’ -(l-r)

(r+l)cose’ +(1-r)
(31)

and

‘zO = Z.

/

(l+r)cose” -(1-r)

(l+r)cose”+ (l-r)
(32)

where Oe and 19” are given by (24) and (25). We actually

wish to refer our equivalent circuit to the inputs of the first

full ZO sections, so we need to add the input sections

shown in Fig. 9. In our analysis we make the simplifying

assumptions that these 1/2 sections are not coupled and

that their electrical length is frequency independent, Since

these line lengths are only A/8 at fo, and since we are

presently interested in parameters evaluated at fo, this

should cause little error.

Based on the above assumptions, the transmission

parameters referred to the input terminals in Fig. 9 are

given by

(33)
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where A, B, C, and D are given by (21), (31), and (32). The

equivalent circuit in Fig. 14(b) has no dissipation; hence,

for frequencies for which the circuits in Figs. 14(a) and

14(b) are equivalent, both the grating even and odd modes

must be in their stopbands as is suggested by the stopband

overlap region AO~ in Fig. 10(b). In this band, Z’ = jXe

and 2° = jXO, and the results of (33) are

z; – X’x”
A;=D~=

Zo(x’– x”)

B;=~(zO+X“)(-zo+X’)
Xe – x~

~,= –j(zo– X“)(zo– x’)
t

2:(X’– x“) “
(34)

From (24) and (25) we find that at ~0, cos O‘ = -- cos 8”.

Then by (31) and (32)

X’x”lf=fo = 2; (35)

which causes A;= D:= O at ~0just as for A, and D, in (30).

Comparing C, in (29) with C; in (34) gives

Z;(x”– x’)

’12=(Zo - X’)(zo - x“) “
(36)

Using (35), at jO (36) can be simplified to

()20 + x“
K1’lf=fo = Zo Z. – x~ ~=fo” (37)

In order to compute the resonator slope parameters xl

and x‘ for the coupled resonators we first need to de-

termine the resonator equivalent reactance jXl and jX2 in

Fig. 14(b). Using A,, C,, and D, from (29), and using the

fact that At= D1 because of the symmetry of the circuit, we

find that

jX1 = jX2 = A,/C,.

Substituting A; and C; from (34) in this equation

that

(z: - X“x’)
jX1 = jX2 = jZo

(Zo - X’)(zo - x“)

(38)

shows

(39)

for the coupled-gratings equivalent circuit. Note that due

to (35), jXl = jXz = O at ~. as should be the case. The

resonator slope parameters Xl and x ~ are easily computed

numerically by use of (9), (39), (31), and (32).

VII. A COUPLED-RESONATOR FILTER EXAMPLE

Without going into the design details at this time, a filter

example will be presented which demonstrates the feasibil-

ity of coupled-resonator filters utilizing gratings. Fig. 15(a)

shows a two-resonator filter, where each resonator consists

of a pair of gratings, in a manner similar to the resonator

in Fig. l(a). The gratings are located on the guides so that

the last 21 section of grating Gol on the upper guide is

separated from the first 21 section of grating G on the

upper guide by A ~/2, and similarly for the resonator on

the lower guide. It is important that gratings Gol and G23

Fig.

‘*, G
11I11111r t 1,111 , 1 1 , 1

‘~LOADS

&

1 1 1 11 1 Illllllllllllllm

d
G
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(b)

15. At (a) is shown a two-resonator filter while at
three-resonator filter of the same type.

(b) is shown a

(x JTOTAL (%Z)TOTAL
R.

R3

A’ B’

Fig. 16. An equivalent circuit for the filter in Fig. 15(a) for frequencies
nem~o.

not be coupled to each other for the same reason that it

was important to keep the input guides separated for the

example in Section V. The primary function of gratings Gol

and Gz~ is to control the amount of termination loading

seen by the resonators, but these gratings also contribute to

the total resonator reactance slope parameters (xl) *Otdand

(x’),.,~. Fig. 16 shows an equivalent circuit for the filter in
Fig. 15(a) for frequencies near ~o, where the portion of the

structure between A and B in Fig. 16 models the coupled

gratings G in Fig. 15(a) by use of the equivalence in Fig.

14(a) and (b). The circuit to the left of A in Fig. 16

represents grating Gol and the source guide, while the

circuit to the right of B represents grating Gz~ and the load

guide. In the gratings Gel, G.’~, the gratings G all have the

same resonant frequency, and the overall effeet in Fig. 16

is to give a two-resonator filter response.

Using methods similar to those discussed in [11], a trial

design was worked out for the Chebyshev response with

0.5-dB ripple, a fractional bandwidth of about 0.011

(ignoring dispersion), and a grating impedance ratio of

r =1.07. This design called for uO/ue =1.02 for the coupled

gratings G, and 13 ZI and 20 sections in gratings Gol and

G2q. Using analysis methods discussed herein, the attenua-

tion characteristic for this filter with infinite gratings G was

computed, and this result is shown by the dashed curve in

Fig. 17. A response was also computed for the more

practical case of gratings G each with 47 lossless ZI and 20

sections, along with 21 more ZI and 20 sections with
gradually increasing loss. (The loss was introduced by way

of a dielectric loss factor which increased linearly from

6“/6’ = 0.004 to 0.084.) The results of these calculations are

shown by the solid line in Fig. 17. These computed results

indicate that this structure has quite promising bandpass

filter properties.
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f/f.

Fig. 17. The dashed line shows a computed response for a filter of the
type in Fig. 15(a) with gratings G infinite. The solid curve shows a
computed response for finite gratings G and distributed loads.

o- ,

0

10
dB

g
10

~ 1065

z 20 -
GHz

:

<
m
.

II
v

4okJ 1 I [ I
8 9 10 II 12 13

FREQUENCY , GHz

Fig. 18,. The dashed line shows a measured response for a filter as in
Fig. 15(a), while the sofid line shows the response with a metaJ divider
inserted between gratings GOI and G23. The responses include mode
transducers and connecting DW guides.

A trial filter based on the design discussed above was

fabricated. It used gratings with notches on their sides with

parameters the same as those for the grating for Fig. 3(a).

Calculations indicated that for this design, if gratings GOI

and Gz~ in Fig. 15(a) were replaced by uniform guides, the

midband loss should be 6.3 dB. Thus we first operated the

structure as shown in Fig. 8, and adjusted the grating

spacings until the midband loss was 6.3 dB greater than

that recorded in the measurements in Fig. 12. (The ad-

justed spacing was 1.14 cm.) Then the smooth input and

output guides were replaced by guides each having 13 pairs

of notches to form gratings GOI and GZ3. In order to locate

the resonator resonances at the center of the stopband of

the gratings, we found it desirable to add some dielectric

spacers in the joint between GOI and its adjacent G grating,

and similarly between Gz~ and its adjacent G grating. (Due

to fringing effects at the step junctions we had underesti-

mated the required center-section length). Then the re-

sponse indicated by the dashed curve in Fig. 18 was

obtained (the 13- to 18-GHz range was similar to that in

Fig. 12). This response has about 0.15-dB Chebyshev rip-

ple, and is slightly mistuned as is indicated by its small tilt.

We found that this error could be corrected by putting

small pieces of dielectric material next to the guide at the

center of each resonator (or it could have been corrected by

altering the dielectric spacers). Since no attempt was made

to include dispersion in the theoretical calculations in Fig.

17, no attempt was made to correlate the measured and

computed responses precisely. However, note that in and

around the passband the responses are qualitatively in

good agreement.

In fabricating the filter structure in Fig. 15(a) we had

anticipated possible trouble due to radiation from gratings

GOI and GIJ which were formed on curved sections of the

guide. However, there were no indica~ions that these grat-

ings had introduced any significant radiation loss. We were

also curious about possible effects due to unwanted stray

coupling between the guides to the left of the grating G. A

metal dividing wall with a sharp leading edge was inserted

between gratings GOI and GZB. The measured response

shown by the solid line in Fig. 18 was then obtained. Note

that the stopband attenuation below the passband has been

significantly increased, while the passband response no

longer has a Chebyshev ripple, indicating slightly less

coupling. The minimum loss is about 2.4 dB which includes

the loss of the mode transducers and the input and output

connecting DW guides. Again, the rnidband loss of the

filter alone is less than 1.5 dB.

In [4], a multiresonator configuration using parallel-cou-

pled gratings for coupling into the first and out of the last

resonators is described. The configurations in Fig. 15(a)

and (b) are probably preferable in most cases because of

the relatively tight couplings required between the termina-

tions and their adjacent resonators. The use of the direct-

coupled gratings such as GOI and Gz~ in Fig. 15(a) permits

a wide range of coupling to the terminations with no

tolerance problems or possible distorted passband re-

sponses due to the even- and odd-mode grating stopbands

not overlapping for terminating parallel gratings (as in [4]).

VIII. CONCLUSIONS

Relations and techniques for the analysis and design of

DW single gratings and parallel-coupled gratings for filter

applications have been obtained. The formulas which as-

sume the use of infinite gratings should be particularly

useful for design purposes. The filter type in Fig. 8 is quite

simple and has attenuation characteristics which are ade-

quate for many applications, especially if such filter sec-

tions are cascaded as shown in Fig, 13 to enhance the

stopband attenuation level. However, the filter structures

in Figs. 8 and 13 provide quite limited control of the

passband characteristic. By use of coupled-resonator filter

structures such as the two-resonator structure in Fig. 15(a),

and the analogous three-resonator version in Fig. 15(b),

Chebyshev, maximally flat, or other passband characteris-

tics can be obtained. Still, other structural variations are

possible which may have advantages.
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