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A Study of the Filter Properties of Single and
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Gratings
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Abstract —Our work with gratings in dielectric image guide shows that
it is distinctly advantageous to place the grating notches on the sides of the
guide, or on the top of the guide, depending on the mode used. Means are
discussed for modeling gratings using an equal-line-length transmission-line
equivalent circuit. Excellent agreement between computed and measured
bandstop frequency responses of gratings are obtained. Design relations for
gratings are presented, and equations for analysis and design of
parallel-coupled grating structures are derived. It is shown that a simple
bandpass filter can be made from properly designed parallel-coupled grat-
ings with distributed loads at one end. It is also shown that by use of
combinations of parallel-coupled and direct-coupled gratings, multiresona-
tor filters with Chebyshev or other characteristics can be obtained. Experi-
mental results in agreement with computed responses are demonstrated.

I. INTRODUCTION

ECAUSE OF THEIR potential value for millimeter-

wave or optical integrated circuits, a great deal of
research has been done on a variety of configurations of
dielectric waveguides. However, relatively little has been
done on techniques for realizing circuitry utilizing such a
waveguide. This is particularly true in the case of
dielectric-waveguide (DW) filters, which pose special prob-
lems. Since the energy is only loosely bound to most DW’s,
sharp bends will radiate strongly, T-junctions cannot be
used, and open and short circuits are usually not available.
This means that in most cases quite different design meth-
ods are required for DW filters than those which are
normally used at microwave frequencies. An exception to
the above statements occurs in the case of the “nonradia-
tive” dielectric waveguide discussed in {12} and [13] which
uses a dielectric guide between two metal ground planes. In
this case, the “nonradiative mode” will not radiate as long
as the frequency is below the frequency for which the
spacing of the ground planes is A ;. /2. For such frequen-
cies, sharp bends and T-junctions can be utilized. (There
are also additional frequency bandwidth limitations related
to the cutoffs of the fundamental and higher order non-
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Fig. 1. (a) A two-port resonator in dielectric waveguide. (b) Typical

attenuation characteristic for structure at (a).

radiative modes.) This guide presents some promising cir-
cuit possibilities, but its requirement of two metal ground
planes and /or its frequency bandwidth limitations can be
disadvantageous in some applications.

There are a few DW filter structures which have ap-
peared which are of practical interest. One is the DW
grating which is well known to have useful potential for
bandstop filter applications [1], but relatively little infor-
mation is presently available in the literature to aid in the
practical design of such gratings. Pairs of such gratings on
a single guide, as in Fig. 1(a), can give a bandpass reso-
nance centered in the stopband of the gratings as suggested
in Fig. 1(b). This can be useful for frequency control of
oscillators [2], but is useless for most bandpass filter appli-
cations because the width of the grating stopband would,
in practical cases, be typically less than 10 percent. Until
recently, the most practical DW bandpass filter that has
been treated in the literature is the ring resonator filter [3].
However, this filter type has a major drawback in that, in
order to reduce radiation, the DW ring must have a very
sizeable radius as compared to a wavelength. This results in
quite closely spaced passbands which are unacceptable for
most situations of interest. Filters using the nonradiative
guide [12], [13] mentioned above may provide attractive
means for designing compact dielectric waveguide filters
using techniques analogous to those used in TEM-mode
stripline filters. However, the application of such filters will
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be limited by the two ground plane requirements, and by
the bandwidth limitations of this type of guide (which may
make it difficult to achieve stopbands as broad and strong
as are frequently required).

We have been working on new ways of utilizing DW
gratings in parallel-coupled configurations in order to ob-
tain bandpass filters with strong broad stopbands. The
methods used appear to be amenable to use with various
forms of dielectric waveguides. Some early, preliminary
results on this work have been previously reported {4}, [5].
In order to build a sound basis for the optimum design of
DW filters of this class, we have studied the fundamental
properties of both single and parallel-coupled DW grat-
ings. This paper reports on the results of that study.
Herein, we will also discuss and illustrate by theoretical
and experimental results how parallel-coupled grating
structures can be used for realizing bandpass DW filters
with broad stopbands. However, we will delay discussion
of the systematic design of such filters for a future paper
when more examples have been explored.

II. CONFIGURATION AND MODELING OF DW
GRATINGS

We have been working with an “image guide” consisting
of a DW on a metal ground plane, and have tested grating
performance both using notches in the top of the guide as
suggested in Fig. 1(a) and notches in the sides of the guide
as indicated in Fig. 2(a). We found that when using the
lowest order mode whose E field is predominantly verti-
cally polarized (it would be referred to as the Ef; mode in
[6]), the use of notches on the sides of the guide as in Fig.
2(a) was decidedly superior [7]. Conversely, when using the
predominantly horizontally polarized E} mode, notches in
the top of the guide as in Fig. 1(a) were much superior. By
being “superior” we mean having a much stronger attenua-
tion for the given depth of notches and having no spurious
stopbands close to the desired stopband. In our filter tests,
we have used the E}; mode and gratings with notches on
their sides. These matters are discussed in [7] along with
other observations concerning modes in DW gratings.

For purposes of a filter design using gratings, it is
important to have an accurate, simple means for char-
acterizing the gratings. As has been done by others, we
model DW gratings by a transmission-line equivalent such
as that in Fig. 2(b). But note that here the equivalent
circuit uses line sections which are specifically all of the
same length (and it assumes the same wave velocity
throughout). By analysis of the circuit in Fig. 2(b) it can be
shown that if a grating is terminated in Z, at both ends,
the mid-stopband attenuation 4, ,, in decibels is given by

452"

(rn+1)°

1)

A = —10log,q [

where # is the number of Z, sections in the grating, and

Zl
r——Z—O>1 (2)
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Fig. 2. (a) The dielectric-waveguide (DW) grating configuration used in
the experiments in this paper. (b) An equal-line-length equivalent
circuit for gratings such as that at (a).

which, as indicated, is greater than one for a grating such
as that in Fig. 2(a). Equations (1) and (2) can be turned
around so that we can compute » from a measured value of
A, for a test grating.! The result is

=\/li__\/1—T (38)
1—-v1-T

where

T = antilog,,, ( —%"*—") . (3b)
Thus the equivalent-circuit parameters for a given grating
design can be determined experimentally by fabricating a
trial grating and determining its mid-stopband attenuation
A .. and the frequency f, at which that attenuation occurs.
From n and the measured 4., r can be computed by (3a).
The measured stopband center frequency f; fixes the wave
velocity to be used in the equivalent circuit in Fig. 2(b)
because at frequency f, all of the line lengths in the
equivalent circuit are a quarter-wavelength long. Note that
a more precise equivalent circuit than that in Fig. 2(b)
would include lumped reactances to account for the fring-
ing fields at the steps in Fig. 2(a). However, using the
approach outlined here these effects are not ignored as we
are using effective values of the impedance ratior=Z, /Z,
and average wave velocity, both of which have the in-
fluence of these fringing fields merged into them. As we
shall see, since the fringing field effects are relatively small,
this approximate methods works quite well, at least for
computing responses over the stopband frequencies.

Of course, dispersion must also be included for precise
calculation of frequency response. Our approach has been
to first obtain a measured wave velocity at the center
frequency f, as described above. Then a theoretical average
velocity at frequency f, over a period /, +/; in Fig. 2(a) is
computed using the effective dielectric constant method [8]

1n our experimental work we measured 4., from measured responses
such as that in Fig. 3(a) by drawing a horizontal line across between the
minimum attenuation points on both sides of the stopband and then
measuring from this line down to the maximum attenuation point.
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Fig. 3. (a) Computed and measured attenuation for a grating as in Fig.
2(a) with 35 narrow sections, w =1.270 cm, h =1.016 cm, w; / w = 0.625,
ly=0.528 cm, /;=0.577 cm, and ¢, =2.55. (b) Computed and mea-
sured attenuation for a grating as for Fig. 3(a) but with 38 narrow
sections, w; /w = 0.375, /5 = 0.541 cm, and /; = 0.648 cm.

with junction fringing-field effects neglected.> Then the
velocity used for computing the response is made to vary
with frequency about the measured value at f; proportion-
ally to the way the “theoretical” average velocity varies
about its £, value.

Fig. 3(a) shows a measured response for a Rexolite 1422
grating as in Fig. 2(a) having ¢, = 2.55, 35 Z, sections, and
w, /w = 0.625. (Detailed dimensions are given in the figure
caption.) This grating was found to have r =1.069, and the
agreement between measured and computed responses is
seen to be excellent. Fig. 3(b) shows the results for another
grating made from the same material but with w, /w =
0.375, giving very deep notches. In this case, the attenua-
tion is much stronger and r =1.167. Even though the
fringing field effects in this case must be relatively large,
the agreement between the measured and computed re-
sponses is still reasonably good.

In the example designs discussed above, we endeavored
to make the electrical lengths of the Z; and Z, sections
approximately equal at the stopband center frequency f,
in conformity with the equivalent circuit in Fig. 2(b).
However, we have found that in many situations one can
use the equal-line-length circuit in Fig., 2(b) to accurately

2This approximate theoretical average velocity has been around 3-per-
cent lower than our measured average velocity in our example grating
cases. Comparing these results with an average velocity obtained from
velocities measured on sections of uniform guide suggests that most of the
roughly 3-percent error referred to is due to the effective dielectric
constant method approximations while surprisingly little error is due to
the fringing fields at the discontinuities.

compute the frequency response for gratings where the Z;
and Z, sections have very different electrical lengths. The
requirements are that the effective value of » used in the
circuit in Fig. 2(b) must be chosen to give the same
midband attenuation as is given by the actual grating with
unequal line electrical lengths, and the value of r must not
be too large if the electrical lengths are very unequal.
Taking an extreme example, the frequency response was
computed for a grating having 30 Z;, and Z, sections,
r =1.2, and a 1-to-3 ratio of line lengths. This grating had a
midband attenuation of 27.6 dB. By (3a,b), the corre-
sponding value of r for an equal-line-length model was
r =1.138, and the equal line lengths were set to the average
value of the unequal line lengths. The frequency response
for the equal-line-length model was very nearly the same as
that for the unequal-line-length model in the vicinity of the
stopband (where the computations were made). Being able
to use this simple, equal-line-length model in Fig. 2(b)
provides considerable simplification and convenience as
fewer parameters are involved.

Besides experimental means for determination of the
grating impedance ratio r, we have also investigated the use
of the approximate equation ‘

Z,
1= = (0)/(0), @

where (v,); is the phase velocity in the region of Z; and
(u,)o 1s the phase velocity in the region of Z,. Equation (4)
would be exact for a metal waveguide carrying a TE mode
with Z, regions completely filled with dielectric and Z;
regions completely filled with air. Using the effective di-
electric constant method for computing the velocities, (4)
yields r =1.075 for the grating used for Fig. 3(a) as com-
pared to the 1.069 measured value. For the grating used for
Fig. 3(b), (4) yields r=1.173 as compared’ to the 1.167
measured value. This agreement is surprisingly good and
shows that (4) can be a useful approximation for gratings,
as in Fig. 2(a), excited in the Ey; mode. However, we also
found that in the case of an EJ} mode exciting a grating as
in Fig. 2(a), or an E}; mode exciting a grating made using
notches in the top of the guide, the measured value of r is
considerably less than is predicted by (4).

III. CHARACTERIZATION OF INFINITE GRATINGS

In order to be able to evaluate the fundamental char-
acteristics of gratings independently from whatever termin-
ations they are going to have, it is desirable to utilize the
parameters of infinitely long gratings. This can be done in
terms of their “image parameters” (see [10, ch. 3]). Fig.
4(a) shows part of a grating as in Fig. 2(b) which extends
to infinity on the right. This infinite grating can be thought
of as consisting of basic sections as in Fig. 4(b) with Z,
ends connected to Z; ends and Z, ends connected to Z;
ends. If we look in to the grating at the point Z;, in Fig.
4(a), the impedance of the infinite grating extending to the
right is given by

(1+7r)cos@—(1—r)

Z10= %0\ (1% r)cosf+(1=1) °

(52)
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(a) Equivalent circuit for a grating which extends to infinity to
the right. (b) A fundamental section of the infinite grating,

Fig. 4.

Alternatively, if we look in to one of the basic sections as
in Fig. 4(b) from the right side and the grating extends to
infinity to the left, the impedance seen will be

_ (1+r)cos@+(1-r)
ZII_ZI\/(1+r)cosﬂ—(1—r) (5b)
where
_7f
0—2—f0‘. (50)

In (5¢), f, is the frequency at which the line lengths / in Fig.
4(a) are a quarter-wavelength long. Of course, in many
cases-it will be necessary to modify the electrical-length
relation (5¢) in order to include the effects of dispersion.
The impedances Z,, and Z,, are the “image impedances”
for this structure and can be derived by the methods of [10,
sec. 3.05]. When (5a) and (5b) are imaginary, the sign for
the square root should be chosen so the reactance versus
frequency has a positive slope.

Fig. 5(a) shows a plot of the image impedance Z,, versus
frequency for the exaggerated case of » =1.894. Within the
frequency range shown there is a passband from f =0 to £,
and from f, to 2f,, in which the impedance is purely real.
Also there is a stopband from f = f, to f, in which the
impedance is purely imaginary. Now the impedance Z,, in
Fig. 4(a) would usually be the one of most interest rather
than Z,,. If we add on the additional line length //2 and
compute the impedance Z,, the result is as shown in Fig.
5(b). Note that in the stopband the grating exhibits series
resonance. The sharp spurs in the X, characteristic are
possible because the grating is infinite.

By use of (5a)—(5c¢) it can be shown that the fractional
bandwidth of the stopband of a grating is given by

A_f—fa~j4_ . (r—1
%—lT—WSIH 1(r—kl)

or for (r—-1) <1

(62)

=2(r-1) (6b)

- =l
Note that for (r —1) <1, the fractional stopband width is

proportional to (r —1). Equations (6a) and (6b) do not
include the effects of dispersion, but at least for narrow-
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Fig. 5. (a) The image impedance Z;, seen looking right into the infinite

grating as defined in Fig. 4(a). (b) The impedance Z,, looking into the
infinite grating as defined in Fig. 4(a).

band cases this can be corrected relatively simply by in-
cluding appropriate derivatives of the guide wavelength.
The above equations for A /f, should be divided by

[P Ay
0 df 1 df

D=— (7
lﬁ.,.]ﬁ
0 1

f f f=ro

where /; and A, are for the lines of impedance Z;, and /;
and A are for the lines of impedance Z,. The parameter D
is greater than one for dispersive gratings and reduces to
one for nondispersive gratings. Thus it is seen that the
effect of dispersion will be to reduce the stopband width.

The approximate values for the image-stopband-edge
frequencies f, and f, are shown in Fig. 3(b) for that
particular grating. If that grating was properly terminated
in its image impedance at both ends, the attenuation would
go identically to zero at f, and f,, and remain zero
throughout the passbands. However, due to mismatch be-
tween the image impedance Z;, and the Z; line impedances
used at both ends, the attenuation does not go to zero at f,
and f,, and has ripples in the passbands. The ripple
minima occur when the overall image phase shift of the
grating is a multiple of 7 so that the reflections from the
ends cancel, while at the ripple maxima the overall image
phase shift of the grating is an odd multiple of #/2 so that
the reflections from the ends add in phase (see [10, ch. 3]).
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By taking the derivative of the image reactance X, at f,
(as in [9]), we find that the slope of X, at £ is like that of a
line of impedance Z, which has total reflection at a point

1 1 r

2(r—1) 2 2(r-1) ®)
half-wavelengths beyond where Z,, is observed in Fig. 4(a).
(This equation differs from [9, (10b)] by 1/2 because Z,,

m,

looks into an initial Z; section instead of an initial Z;

section.) For characterizing resonances such as that in Fig.
5(b) for purposes of filter design [10], it is useful to define a
reactance slope parameter

W dXvin

Xin = B3 dw w=w0'

()

Making use of (8) and known properties of transmission-
line resonators (see [10, sec. 5.08]), we find that the reac-
tance slope parameter for the resonance of Z, in Figs. 4(a)
and 5(b) is given by

(10)

This equation can be corrected for dispersion by multiply-
ing by the factor D in (7). Equation (10) is applicable to
finite as well as infinite gratings if the grating is long
enough to have, say, 15-dB or more attenuation at f,.

IV. ANALYSIS OF PARALLEL-COUPLED GRATINGS

We shall see in Sections V-VII that parallel-coupled
gratings have very useful properties for bandpass filter
applications. When analyzing the coupling between such
gratings, it is convenient to think in terms of their even and
odd modes. The even mode is excited when the two grat-
ings are driven symmetrically as suggested in Fig. 6(a),
while the odd mode is excited if they are driven asymmetri-
cally as shown in Fig. 6(c). Because of the symmetries,
identical results are obtained for the left grating if it alone
is used, and for the even mode a magnetic wall is placed at
the plane of symmetry, while for the odd mode an electric
wall is placed at that plane, as shown in Figs. 6(b) and
6(d). The effect of the magnetic wall or electric wall
adjacent to the grating is primarily to alter the wave
velocities in the grating. From test experiments we have
found that for cases of very tight coupling the walls will
also have significant effect on the r = Z, /Z,, ratio, but that
in many cases of interest that effect is small and can be
ignored. Thus we see that for the odd and even modes the
gratings behave essentially the same except for somewhat
different wave velocities. This will cause the stopbands for
the odd and even modes to be centered at different fre-
quencies. ' ‘

Fig. 7(a) shows a pair of coupled gratings with a genera-
tor and load, and it will be of considerable use to us to
obtain the transfer function ¥, /V,, where ¥, is the voltage
between node 2 and ground. The excitation in Fig. 7(a) can
be seen to be representable as a superposition of the
even-mode excitation shown in Fig. 7(b) and the odd-mode

MAGNETIC WALL

£ £ b
[
@ o - 2
A METAL METAL
(a) EVEN MODE )
ELECTRIC WALL
€r €r =
A METAL METAL
(C) 0ODD MODE (d)

Fig. 6. At (a) is shown parallel gratings excited in the even mode and at
(b) is shown an equivalent single-grating boundary-value problem. At
(c) and (d) are shown analogous odd-mode situations.

Fig. 7. At (a) is shown two coupled gratings driven by a single genera-
tor. This excitation is seen to be representable as the superposition of
the even- and odd-mode excitations at (b) and (c), respectively.

excitation shown in Fig. 7(c). The even-mode reflection
coefficient is
e e
Te= _Z__i — & (11)
Z°+R, V¢
where Z°¢ is the impedance seen looking right from either
node 1 or node 2 in Fig. 7(b) and V° and ¥V are the
even-mode incident and reflected voltages, respectively.
The impedance Z¢ is computed from the transmission-line
equivalent circuit using the average even-mode velocity v°.
(The even-mode velocities for the Z, and Z,; sections will
not be the same for a grating as in Fig. 2(a), so an average
of the two velocities weighted in proportion to the lengths
I, and /; (or a measured average value) should be used in
the equal-line-length equivalent circuit.) The total even-
mode voltage at terminal 1 is

+ e 12
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Thus because of the symmetry of the even mode, at both
nodes 1 and 2

(13)

Analogously, for the odd-mode situation in Fig. 7(c) the
reflection coefficient is

Vi=Vi=2(1+T°).

Z°-R
Mro=——->H->_
Z°+R,

(14)

where Z° is computed from the grating equivalent circuit
using the average odd-mode velocity. Then by the odd-mode
asymmetry

(15)

Vp=-Vp=—2(1+T).

The total voltage at node 2 is then
Vy=VE+Vy

V e 4
-5 (@e-T9) (16)

and our desired transfer function is
v, T°-TI°

V, 4

a7)

Note that if
ITé|=|I’|=1land I'* = - T (18)

V2/V,|=1/2, and maximum power transfer will result.
Inserting (11) and (14) in (17) yields
v, R,(z¢-Z°)

Y, 2Az-+R,)(2°+R,) (19)

Equations (17) and (19) are specialized to the situation
where the gratings have equal, resistive terminations R, at
ports 1 and 2. Cases having arbitrary circuits connected at
the input and output can be treated by representing the
coupled gratings using the well-known ABCD parameters

defined by

4 Bl »n] [w

C Di||l-L| |
where I; and I, are as defined in Fig. 7(a). It can be shown
that

(20)

Z°+ Z°
A=D=""2
Ze—7°
2Z¢7°
B= Ze 70
2
C=ze—z (21)

It was noted herein that due to the different velocities
for the odd and even modes, these modes have grating
resonances at different frequencies. The question arises as
to what velocity will fix the center frequency of a transmis-
sion resonance observed when the circuit is excited as in
Fig. 7(a). Trying some simple examples, the effective phase
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constant for computing resonances is found to be

w
:Beff=v_ff=(ﬁe+:80)/2 (22)
where
20%°
Vet = 0+ 0° (23)

is the effective velocity. This effective velocity is used in
calculating the center frequency f, of the passband which is
provided by coupled gratings.

Equations (22) and (23) lead to convenient expressions
for computing the even- and odd-mode electrical lengths in
the equal-line-length models of the gratings. The even-mode
electrical length for each line section is

- | T | L (24)
e+l 0

while each section electrical length for the odd mode is

ki

/ (25)

6° = L
fo

UO
1

where f; is the center frequency of the passband. (At f; all
of the line sections are a quarter-wavelength long in terms
of the wave velocity v,;.)

V. A SIMPLE PARALLEL-COUPLED-GRATING
Banpprass FILTER

Fig. 8 depicts a kind of DW grating structure which has
useful bandpass filter properties. If properly designed,
when the gratings are in their stopband, power entering at
A will be transmitted on out port D. However, when the
gratings are in their passbands, the power will be trans-
mitted on to the loads on the right, and a stopband will
exist with regard to transmission from port 4 to port D. It
is important that as much as possible, coupling should only
exist between the gratings and not between the input and
output guides. This is because any power coupled directly
between the input guide and the output guide will tend to
reflect from the leading edge of the grating at D. This
effect holds to some extent even when the gratings are in
their passbands, and the small power reflected from the
grating leading edge at D will degrade the stopband for
transmission from the input to the output guide. Also, to
minimize reflections from the right ends of the coupled
guides, the loads are formed by gradually introducing lossy
material into the grating structure. This is probably about
as close as we can come to the ideal situation of terminat-
ing the gratings in their image impedances.

In order to analyze a structure of the sort in Fig, 8, let us
first consider the idealized case in Fig. 9 which uses infinite
gratings, with the leading edge of the coupled region at the
center of a Z, section. Then Z° and Z° are given by (5a)
using velocity v® or v°, respectively, and Z¢ and Z° both
look like Fig. 5(a) but with a shift in frequency scales with
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Fig. 8. A simple dielectric waveguide bandpass filter.

Z, z, o z, etc

.

A \L>

! { $
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/lze or 2°

Fig. 9. Equivalent circuit for infinite coupled gratings with the first / /2
portion uncoupled.

f: EVEN f;
L'AOL_.{
(b
Fig. 10. At (a) is shown how the even- and odd-mode stopbands must
be located in order to obtain complete power transfer at f, for the

circuit of Fig. 8. At (b) is shown how these stopbands must overlap in
order for the circuit in Fig. 14(b) to apply.

respect to each other. In order to get complete power
transfer to the output guide, (18) must be satisfied. This
condition will be fulfilled at f, if the velocities v° and v° are
chosen so the even- and odd-mode stopbands are contigu-
ous as shown in Fig. 10(a). Then frequency f’= f, for
which Z° is infinite coincides with frequency f; for which
Z¢ is zero, and by (11) and (14) we see that (18) is satisfied.
By use of (5a) with 8¢ = w!//v° and 6° = wl /v°, the stop-
band-edge constraint at f, in Fig. 10(a) gives

1-r
-1
v_"=COS (1+r)
e

v cos_l(rél).
r+1

(26)

This equation ‘tells us that for a given grating impedance
ratio r, in order to obtain complete power transfer at f, it is
necessary that the gratings are spaced apart a distance so
that the indicated average v°/v° ratio is achieved. Either
closer or greater spacing will result in reduced power
transfer.

Fig. 11 shows the computed response for the case of two
infinite gratings having » =1.071 which by (16) calls for

8 8
T T

TRANSDUCER LOSS dB
7

o

Fig. 11. Computed response for a filter design as in Fig. 8 with infinite

gratings.

v°/v® =1.045. The sharp corners in the response are possi-
ble because the gratings are infinite. Some analysis shows
that the sharp breaks on the sides occur where
fy v f_ v
fO ve fO vo ‘ (27)
If, instead of starting the coupled region of the grating in
the middle of a pair of Z; section (as suggested in Fig. 9),
the coupled region is started at the beginning of a pair of
Z, sections, then Z¢ and Z° will each look like Fig. 5(b),
except for some difference in frequency scale. In this
situation, for maximum power transfer at f;,, (18) must be
satisfied by using a v°/v° ratio such that at f;

(28)

In most cases the bandwidths involved will not be very
large and the v°/v° ratio obtained by (28) will be virtually
the same as that obtained by (26).

A filter of the type in Fig. 8 was tested using a pair of
gratings with the same parameters as for Fig. 3(a), spaced
0.610 cm apart, and driven in the E}; mode. The parallel-
coupled gratings each had 32 Z, and Z, sections. Over
about the last third of each grating, distributed loss was
gradually introduced using absorbing foam material. The
resulting response indicated by the solid line in Fig. 12 is
seen to have the same V shape around the passband that is
apparent in Fig. 11. The various minor spurs in the re-
sponse result from the fact that the gratings are not
terminated in their image impedance, and thus numerous
weak resonances occur because of the small reflections at
the ends of the gratings. We found that these resonances
were greatly suppressed by use of loads formed by distrib-
uted loss in the gratings as for the solid line in Fig. 12. For
example, the dashed line in Fig. 12 shows the computed
response for the case in which the gratings are abruptly
terminated in Z, loads. The distributed loads are seen to
work much better.

The midband loss of 2.6 dB in Fig. 12 includes the mode
launchers and about 86 cm of connecting DW waveguides.
The midband loss of the filter structure alone is less than
1.5 dB. Note that the nominal stopband attenuation is at
most frequencies 30 dB or better. Since this type of filter is
absorptive in its stopbands it should be possible to cascade

JX| oy = 0Zo=— iX3)s o,
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Fig. 12. The solid line shows a measured response (including mode
transducers and connecting DW guides) for a filter as in Fig. 8 using
distributed loads. The dashed line shows a computed response using
lumped Z; loads.

Fig. 13. Filters of the type in Figs. 8 and 12 cascaded to give very high

stopband attenuation.

such structures without having harmful stopband interac-
tions. Thus very large stopband attenuations may be possi-
ble using cascaded filters as in Fig. 13.

THE IMPEDANCE-INVERTING PROPERTY OF
PARALLEL-COUPLED GRATINGS

VI

Suppose we have two resonators, each of which exhibits
a series-type of resonance. If they are connected in series
they will simply give a single-resonator response with an
increased reactance slope parameter. In order to give a
two-resonator type of response they must be coupled by a
circuit which has an effect like the impedance inverter K,
in Fig. 14(b). (Recall that an idealized impedance inverter
acts like a transmission line of characteristic impedance
K,, with +90° phase shift at all frequencies.) Both of the
gratings in Fig. 14(a) when isolated and viewed from the
input of a full Z; section presents a series-type resonance
similar to that in Fig. 5(b). If two such gratings are placed
parallel to each other so that they interact, it is desirable to
know if at terminals 4 and B in Fig. 14(a) they behave like
the two-resonator equivalent circuit in Fig. 14(b) for fre-
quencies in the vicinity of the desired passband; and if so,
what the values are for the reactance slope parameters x;
and x,, and for the inverter parameter K;,, at the center

’ ’ 1 ]ZO

AR E R
= 1 1

Cc/ D ] =

t t .]ZO‘/’z‘ ‘/5
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Fig. 14. At (b) is shown an equivalent circuit which applies for the
circuit shown at (a) at frequencies for which the stopband-overlap
condition in Fig. 10(b) is satisfied.

frequency f,.
The A4, B,C, D parameters for the circuit in Fig. 14(b)

are

At Bt

Ct Dt

J(Ky— X X, /K15)
- Xz/Ku

_X1/K12
= 29
[ J/Ky, } (29)

where at the resonant frequency f, of the resonators,

[At BI} - l: ) 0 jK12:|. (30)
G D f=fo J/ Ky, 0

We wish to compare the 4, B,C, D parameters for the
circuit in Fig. 14(a) with those above in order to establish
any equivalence that may exist.

In order to simplify the analysis we shall assume that the
gratings are infinite and that they are coupled only up to
the middle of the input Z, section as shown in Fig. 9. Then
by (5a) Z¢ and Z° are given by

(1+7)cos°—(1—r)
°V (r+1)cosc+(1-r)

zZe=

(31)

and

o (1+r)cosf°—(1—r)
2"=Zo\ T+ r)cost° +(1=7)

(32)

where 6¢ and #° are given by (24) and (25). We actually
wish to refer our equivalent circuit to the inputs of the first
full Z, sections, so we need to add the input sections
shown in Fig. 9. In our analysis we make the simplifying
assumptions that these //2 sections are not coupled and
that their electrical length is frequency independent. Since
these line lengths are only A /8 at f;, and since we are
presently interested in parameters evaluated at f;, this
should cause little error.

Based on the above assumptions, the transmission
parameters referred to the input terminals in Fig. 9 are
given by

1 iz,
A B —_ —
A ()
2R
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where 4, B, C, and D are given by (21), (31), and (32). The
equivalent circuit in Fig. 14(b) has no dissipation; hence,
for frequencies for which the circuits in Figs. 14(a) and
14(b) are equivalent, both the grating even and odd modes
must be in their stopbands as is suggested by the stopband
overlap region A, in Fig. 10(b). In this band, Z¢ = jX*
and Z° = jX°, and the results of (33) are

Z2— X°X°

Al=py=—C 2
B AT
(2t )2, X)
4 X — X°
(2= X)(Z,- X 3
G'= Z2( xe 0 : ( )
o(X°=X°)

From (24) and (25) we find that at f;,cos0¢= —cos8°.
Then by (31) and (32)

XX=10 =23 (35)
which causes 4, = D/ =0 at f; just as for 4, and D, in (30).
Comparing C, in (29) with C/ in (34) gives
Z2(X°— X°)
(o= X°)(2,- X°)
Using (35), at f, (36) can be simplified to

Zy+ X°
K12|f=fo=zo Z,— X° ; f-
=Jlo

K=

(36)

(37)

In order to compute the resonator slope parameters x;
and x, for the coupled resonators we first need to de-
termine the resonator equivalent reactances jX, and jX, in
Fig. 14(b). Using 4,, C,, and D, from (29), and using the
fact that A, = D, because of the symmetry of the circuit, we
find that

JXi=jX,=4,/C. (38)

Substituting A; and C/ from (34) in this equation shows
that :

(z3-xx)
(Zo=Xx°)(Z,~ X°)

for the coupled-gratings equivalent circuit. Note that due
to (35), jX;= jX,=0 at f;, as should be the case. The
resonator slope parameters x; and x, are easily computed
numerically by use of (9), (39), (31), and (32).

VII.

Without going into the design details at this time, a filter
example will be presented which demonstrates the feasibil-
ity of coupled-resonator filters utilizing gratings. Fig. 15(a)
shows a two-resonator filter, where each resonator consists
of a pair of gratings, in a manner similar to the resonator
in Fig. 1(a). The gratings are located on the guides so that
the last Z; section of grating Gy on the upper guide is
separated from the first Z, section of grating G on the
upper guide by A, /2, and similarly for the resonator on
the lower guide. It is important that gratings Gy, and G,;

(39)

JXi=jX, = jZ,

A CoUPLED-RESONATOR FILTER EXAMPLE

Sor
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G
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Fig. 15. At (a) is shown a two-resonator filter while at (b) is shown a
three-resonator filter of the same type.
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Fig. 16. An equivalent circuit for the filter in Fig. 15(a) for frequencies
near f;.

. not be coupled to each other for the same reason that it

was important to keep the input guides separated for the
example in Section V. The primary function of gratings G,
and G,; is to control the amount of termination loading
seen by the resonators, but these gratings also contribute to
the total resonator reactance slope parameters (x;) o and
(X 2)1ota1- Fig. 16 shows an equivalent circuit for the filter in
Fig. 15(a) for frequencies near f,, where the portion of the
structure between 4 and B in Fig. 16 models the coupled
gratings G in Fig. 15(a) by use of the equivalence in Fig.
14(a) and (b). The circuit to the left of A in Fig. 16
represents grating G, and the source guide, while the
circuit to the right of B represents grating G,; and the load
guide. In the gratings Gy, G»;, the gratings G all have the
same resonant frequency, and the overall effect in Fig. 16
is to give a two-resonator filter response.

Using methods similar to those discussed in [11], a trial
design was worked out for the Chebyshev response with
0.5-dB ripple, a fractional bandwidth of about 0.011
(ignoring dispersion), and a grating impedance ratio of
r =1.07. This design called for v°/v¢ =1.02 for the coupled
gratings G, and 13 Z, and Z; sections in gratings G; and
G,5. Using analysis methods discussed herein, the attenua-
tion characteristic for this filter with infinite gratings G was
computed, and this result is shown by the dashed curve in
Fig. 17. A response was also computed for the more
practical case of gratings G each with 47 lossless Z; and Z,
sections, along with 21 more Z, and Z;, sections with
gradually increasing loss. (The loss was introduced by way
of a dielectric loss factor which increased linearly from
€”’/¢’ = 0.004 to 0.084.) The results of these calculations are
shown by the solid line in Fig. 17. These computed results
indicate that this structure has quite promising bandpass
filter properties.
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Fig. 17. The dashed line shows a computed response for a filter of the
type in Fig. 15(a) with gratings G infinite. The solid curve shows a
computed response for finite gratings G and distributed loads.
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Fig. 18, The dashed line shows a measured response for a filter as in
Fig. 15(a), while the solid line shows the response with a metal divider
inserted between gratings Gy, and G,3;. The responses include mode
transducers and connecting DW guides.

A trial filter based on the design discussed above was
fabricated. It used gratings with notches on their sides with
parameters the same as those for the grating for Fig. 3(a).
Calculations indicated that for this design, if gratings Gy,
and G,, in Fig. 15(a) were replaced by uniform guides, the
midband loss should be 6.3 dB. Thus we first operated the
structure as shown in Fig. 8, and adjusted the grating
spacings until the midband loss was 6.3 dB greater than
that recorded in the measurements in Fig. 12. (The ad-
justed spacing was 1.14 cm.) Then the smooth input and
output guides were replaced by guides each having 13 pairs
of notches to form gratings G; and G,;. In order to locate
the resonator resonances at the center of the stopband of
the gratings, we found it desirable to add some dielectric
spacers in the joint between G, and its adjacent G grating,
and similarly between G,; and its adjacent G grating. (Due
to fringing effects at the step junctions we had underesti-
mated the required center-section length). Then the re-
sponse indicated by the dashed curve in Fig. 18 was
obtained (the 13- to 18-GHz range was similar to that in
Fig. 12). This response has about 0.15-dB Chebyshev rip-
ple, and is slightly mistuned as is indicated by its small tilt.
We found that this error could be corrected by putting
small pieces of dielectric material next to the guide at the
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center of each resonator (or it could have been corrected by
altering the dielectric spacers). Since no attempt was made
to include dispersion in the theoretical calculations in Fig,
17, no attempt was made to correlate the measured and
computed responses precisely. However, note that in and
around the passband the responses are qualitatively in
good agreement.

In fabricating the filter structure in Fig. 15(a) we had
anticipated possible trouble due to radiation from gratings
Gy, and G,; which were formed on curved sections of the
guide. However, there were no indications that these grat-
ings had introduced any significant radiation loss. We were
also curious about possible effects due to unwanted stray
coupling between the guides to the left of the grating G. A
metal dividing wall with a sharp leading edge was inserted
between gratings G, and G,;. The measured response
shown by the solid line in Fig. 18 was then obtained. Note
that the stopband attenuation below the passband has been
significantly increased, while the passband response no
longer has a Chebyshev ripple, indicating slightly less
coupling. The minimum loss is about 2.4 dB which includes
the loss of the mode transducers and the input and output
connecting DW guides. Again, the midband loss of the
filter alone is less than 1.5 dB.

In {4], a multiresonator configuration using parallel-cou-
pled gratings for coupling into the first and out of the last
resonators is described. The configurations in Fig. 15(a)
and (b) are probably preferable in most cases because of
the relatively tight couplings required between the termina-
tions and their adjacent resonators. The use of the direct-
coupled gratings such as Gy, and G, in Fig. 15(a) permits
a wide range of coupling to the terminations with no
tolerance problems or possible distorted passband re-
sponses due to the even- and odd-mode grating stopbands
not overlapping for terminating parallel gratings (as in [4]).

VII.

Relations and techniques for the analysis and design of
DW single gratings and parallel-coupled gratings for filter
applications have been obtained. The formulas which as-
sume the use of infinite gratings should be particularly
useful for design purposes. The filter type in Fig. 8 is quite
simple and has attenuation characteristics which are ade-
quate for many applications, especially if such filter sec-
tions are cascaded as shown in Fig. 13 to enhance the
stopband attenuation level. However, the filter structures
in Figs. 8 and 13 provide quite limited control of the
passband characteristic. By use of coupled-resonator filter
structures such as the two-resonator structure in Fig. 15(a),
and the analogous three-resonator version in Fig. 15(b),
Chebyshev, maximally flat, or other passband characteris-
tics can be obtained. Still, other structural variations are
possible which may have advantages.

CONCLUSIONS
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